Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562825

RESUMEN

Many transcription factors (TFs) have been shown to bind RNA, leading to open questions regarding the mechanism(s) of this RNA binding and its role in regulating TF activities. Here we use biophysical assays to interrogate the kon,koff, and Kd for DNA and RNA binding of two model human transcription factors, ERα and Sox2. Unexpectedly, we found that both proteins exhibited multiphasic nucleic acid binding kinetics. We propose that Sox2 RNA and DNA multiphasic binding kinetics could be explained by a conventional model for sequential Sox2 monomer association and dissociation. In contrast, ERα nucleic acid binding exhibited biphasic dissociation paired with novel triphasic association behavior, where two apparent binding transitions are separated by a 10-20 min "lag" phase depending on protein concentration. We considered several conventional models for the observed kinetic behavior, none of which adequately explained all the ERα nucleic acid binding data. Instead, simulations with a model incorporating sequential ERα monomer association, ERα nucleic acid complex isomerization, and product "feedback" on isomerization rate recapitulated the general kinetic trends for both ERα DNA and RNA binding. Collectively, our findings reveal that Sox2 and ERα bind RNA and DNA with previously unappreciated multiphasic binding kinetics, and that their reaction mechanisms differ with ERα binding nucleic acids via a novel reaction mechanism.

2.
Science ; 383(6684): 702-703, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38359118

RESUMEN

Suppressing telomerase action at broken DNA preserves genome integrity.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Telomerasa , Telómero , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Humanos
3.
bioRxiv ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873413

RESUMEN

Telomerase is a specialized reverse transcriptase that uses an intrinsic RNA subunit as the template for telomeric DNA synthesis. Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-containing pseudoknot (t/PK) and the three-way junction (CR4/5). These two hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are thus essential for telomerase catalytic activity. Here, we probe the structure of hTR in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis. Unexpectedly, approximately 15% of the steady state population of hTR has a CR4/5 conformation lacking features required for hTERT binding. Mutagenesis demonstrates that stabilization of the alternative CR4/5 conformation is detrimental to telomerase assembly and activity. We propose that this misfolded portion of the cellular hTR pool is either slowly refolded or degraded. Thus, kinetic traps for RNA folding that have been so well-studied in vitro may also present barriers for assembly of ribonucleoprotein complexes in vivo.

4.
Science ; 381(6664): 1331-1337, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37733873

RESUMEN

Polycomb repressive complex 2 (PRC2) silences genes through trimethylation of histone H3K27. PRC2 associates with numerous precursor messenger RNAs (pre-mRNAs) and long noncoding RNAs (lncRNAs) with a binding preference for G-quadruplex RNA. In this work, we present a 3.3-Å-resolution cryo-electron microscopy structure of PRC2 bound to a G-quadruplex RNA. Notably, RNA mediates the dimerization of PRC2 by binding both protomers and inducing a protein interface composed of two copies of the catalytic subunit EZH2, thereby blocking nucleosome DNA interaction and histone H3 tail accessibility. Furthermore, an RNA-binding loop of EZH2 facilitates the handoff between RNA and DNA, another activity implicated in PRC2 regulation by RNA. We identified a gain-of-function mutation in this loop that activates PRC2 in zebrafish. Our results reveal mechanisms for RNA-mediated regulation of a chromatin-modifying enzyme.


Asunto(s)
G-Cuádruplex , Complejo Represivo Polycomb 2 , Precursores del ARN , ARN Largo no Codificante , Animales , Microscopía por Crioelectrón , Histonas/genética , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/genética , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Mutación con Ganancia de Función , Regiones Promotoras Genéticas , Unión Proteica , Proteína Potenciadora del Homólogo Zeste 2/química , Proteína Potenciadora del Homólogo Zeste 2/genética , Cristalografía por Rayos X , Conformación Proteica , Multimerización de Proteína
5.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645830

RESUMEN

Polycomb Repressive Complex 2 (PRC2), an important histone modifier and epigenetic repressor, has been known to interact with RNA for almost two decades. In our previous publication (Long, Hwang et al. 2020), we presented data supporting the functional importance of RNA interaction in maintaining PRC2 occupancy on chromatin, using comprehensive approaches including an RNA-binding mutant of PRC2 and an rChIP-seq assay. Recently, concerns have been expressed regarding whether the RNA-binding mutant has impaired histone methyltransferase activity and whether the rChIP-seq assay can potentially generate artifacts. Here we provide new data that support a number of our original findings. First, we found the RNA-binding mutant to be fully capable of maintaining H3K27me3 levels in human induced pluripotent stem cells. The mutant had reduced methyltransferase activity in vitro, but only on some substrates at early time points. Second, we found that our rChIP-seq method gave consistent data across antibodies and cell lines. Third, we further optimized rChIP-seq by using lower concentrations of RNase A and incorporating a catalytically inactive mutant RNase A as a control, as well as using an alternative RNase (RNase T1). The EZH2 rChIP-seq results using the optimized protocols supported our original finding that RNA interaction contributes to the chromatin occupancy of PRC2.

6.
Proc Natl Acad Sci U S A ; 120(26): e2220537120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339225

RESUMEN

We previously demonstrated that the polycomb repressive complex 2 chromatin-modifying enzyme can directly transfer between RNA and DNA without a free-enzyme intermediate state. Simulations suggested that such a direct transfer mechanism may be generally necessary for RNA to recruit proteins to chromatin, but the prevalence of direct transfer capability is unknown. Herein, we used fluorescence polarization assays and observed direct transfer for several well-characterized nucleic acid-binding proteins: three-prime repair exonuclease 1, heterogeneous nuclear ribonucleoprotein U, Fem-3-binding factor 2, and MS2 bacteriophage coat protein. For TREX1, the direct transfer mechanism was additionally observed in single-molecule assays, and the data suggest that direct transfer occurs through an unstable ternary intermediate with partially associated polynucleotides. Generally, direct transfer could allow many DNA- and RNA-binding proteins to conduct a one-dimensional search for their target sites. Furthermore, proteins that bind both RNA and DNA might be capable of readily translocating between those ligands.


Asunto(s)
Proteínas de Unión al ADN , Polinucleótidos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ARN/genética , Proteínas de Unión al ARN/genética , ADN/metabolismo , Cromatina
7.
Proc Natl Acad Sci U S A ; 120(23): e2220528120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252986

RESUMEN

The chromatin-modifying enzyme, Polycomb Repressive Complex 2 (PRC2), deposits the H3K27me3 epigenetic mark to negatively regulate expression at numerous target genes, and this activity has been implicated in embryonic development, cell differentiation, and various cancers. A biological role for RNA binding in regulating PRC2 histone methyltransferase activity is generally accepted, but the nature and mechanism of this relationship remains an area of active investigation. Notably, many in vitro studies demonstrate that RNA inhibits PRC2 activity on nucleosomes through mutually antagonistic binding, while some in vivo studies indicate that PRC2's RNA-binding activity is critical for facilitating its biological function(s). Here we use biochemical, biophysical, and computational approaches to interrogate PRC2's RNA and DNA-binding kinetics. Our findings demonstrate that PRC2-polynucleotide dissociation rates are dependent on the concentration of free ligand, indicating the potential for direct transfer between nucleic acid ligands without a free-enzyme intermediate. Direct transfer explains the variation in previously reported dissociation kinetics, allows reconciliation of prior in vitro and in vivo studies, and expands the potential mechanisms of RNA-mediated PRC2 regulation. Moreover, simulations indicate that such a direct transfer mechanism could be obligatory for RNA to recruit proteins to chromatin.


Asunto(s)
Cromatina , Complejo Represivo Polycomb 2 , Cromatina/genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , ARN/genética , ARN/metabolismo , ADN/genética , ADN/metabolismo , Nucleosomas/genética , Unión Proteica
8.
bioRxiv ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36798278

RESUMEN

The histone methyltransferase PRC2 (Polycomb Repressive Complex 2) silences genes via successively attaching three methyl groups to lysine 27 of histone H3. PRC2 associates with numerous pre-mRNA and lncRNA transcripts with a binding preference for G-quadruplex RNA. Here, we present a 3.3Å-resolution cryo-EM structure of PRC2 bound to a G-quadruplex RNA. Notably, RNA mediates the dimerization of PRC2 by binding both protomers and inducing a protein interface comprised of two copies of the catalytic subunit EZH2, which limits nucleosome DNA interaction and occludes H3 tail accessibility to the active site. Our results reveal an unexpected mechanism for RNA-mediated inactivation of a chromatin-modifying enzyme. Furthermore, the flexible loop of EZH2 that helps stabilize RNA binding also facilitates the handoff between RNA and DNA, an activity implicated in PRC2 regulation by RNA. One-Sentence Summary: Cryo-EM structure of RNA-bound PRC2 dimer elucidates an unexpected mechanism of PRC2 inhibition by RNA.

9.
Mol Cell ; 83(3): 320-323, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736305

RESUMEN

The Central Dogma has been a useful conceptualization of the transfer of genetic information, and our understanding of the detailed mechanisms involved in that transfer continues to evolve. Here, we speak to several scientists about their research, how it influences our understanding of information transfer, and questions for the future.

10.
RNA ; 29(3): 346-360, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574982

RESUMEN

Aberrant DNA methylation is one of the earliest hallmarks of cancer. DNMT1 is responsible for methylating newly replicated DNA, but the precise regulation of DNMT1 to ensure faithful DNA methylation remains poorly understood. A link between RNA and chromatin-associated proteins has recently emerged, and several studies have shown that DNMT1 can be regulated by a variety of RNAs. In this study, we have confirmed that human DNMT1 indeed interacts with multiple RNAs, including its own nuclear mRNA. Unexpectedly, we found that DNMT1 exhibits a strong and specific affinity for GU-rich RNAs that form a pUG-fold, a noncanonical G-quadruplex. We find that pUG-fold-capable RNAs inhibit DNMT1 activity by inhibiting binding of hemimethylated DNA, and we additionally provide evidence for multiple RNA binding modes with DNMT1. Together, our data indicate that a human chromatin-associated protein binds to and is regulated by pUG-fold RNA.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Conformación de Ácido Nucleico , ARN , Humanos , Cromatina/metabolismo , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ARN/genética , ARN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo
11.
Nature ; 608(7924): 819-825, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35831508

RESUMEN

Telomeres, the natural ends of linear chromosomes, comprise repeat-sequence DNA and associated proteins1. Replication of telomeres allows continued proliferation of human stem cells and immortality of cancer cells2. This replication requires telomerase3 extension of the single-stranded DNA (ssDNA) of the telomeric G-strand ((TTAGGG)n); the synthesis of the complementary C-strand ((CCCTAA)n) is much less well characterized. The CST (CTC1-STN1-TEN1) protein complex, a DNA polymerase α-primase accessory factor4,5, is known to be required for telomere replication in vivo6-9, and the molecular analysis presented here reveals key features of its mechanism. We find that human CST uses its ssDNA-binding activity to specify the origins for telomeric C-strand synthesis by bound Polα-primase. CST-organized DNA polymerization can copy a telomeric DNA template that folds into G-quadruplex structures, but the challenges presented by this template probably contribute to telomere replication problems observed in vivo. Combining telomerase, a short telomeric ssDNA primer and CST-Polα-primase gives complete telomeric DNA replication, resulting in the same sort of ssDNA 3' overhang found naturally on human telomeres. We conclude that the CST complex not only terminates telomerase extension10,11 and recruits Polα-primase to telomeric ssDNA4,12,13 but also orchestrates C-strand synthesis. Because replication of the telomere has features distinct from replication of the rest of the genome, targeting telomere-replication components including CST holds promise for cancer therapeutics.


Asunto(s)
Replicación del ADN , Replicón , Complejo Shelterina , Telómero , ADN Primasa/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , G-Cuádruplex , Humanos , Replicón/genética , Complejo Shelterina/genética , Complejo Shelterina/metabolismo , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(22): e2201883119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35617427

RESUMEN

Polycomb-group proteins play critical roles in gene silencing through the deposition of histone H3 lysine 27 trimethylation (H3K27me3) and chromatin compaction. This process is essential for embryonic stem cell (ESC) pluripotency, differentiation, and development. Polycomb repressive complex 2 (PRC2) can both read and write H3K27me3, enabling progressive spreading of H3K27me3 on the linear genome. Long-range Polycomb-associated DNA contacts have also been described, but their regulation and role in gene silencing remain unclear. Here, we apply H3K27me3 HiChIP, a protein-directed chromosome conformation method, and optical reconstruction of chromatin architecture to profile long-range Polycomb-associated DNA loops that span tens to hundreds of megabases across multiple topological associated domains in mouse ESCs and human induced pluripotent stem cells. We find that H3K27me3 loop anchors are enriched for Polycomb nucleation points and coincide with key developmental genes. Genetic deletion of H3K27me3 loop anchors results in disruption of spatial contact between distant loci and altered H3K27me3 in cis, both locally and megabases away on the same chromosome. In mouse embryos, loop anchor deletion leads to ectopic activation of the partner gene, suggesting that Polycomb-associated loops control gene silencing during development. Further, we find that alterations in PRC2 occupancy resulting from an RNA binding­deficient EZH2 mutant are accompanied by loss of Polycomb-associated DNA looping. Together, these results suggest PRC2 uses RNA binding to enhance long-range chromosome folding and H3K27me3 spreading. Developmental gene loci have unique roles in Polycomb spreading, emerging as important architectural elements of the epigenome.


Asunto(s)
Cromosomas , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Histonas , Complejo Represivo Polycomb 2 , Animales , Inmunoprecipitación de Cromatina/métodos , Cromosomas/química , Cromosomas/metabolismo , Embrión de Mamíferos , Proteína Potenciadora del Homólogo Zeste 2/genética , Histonas/genética , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Conformación de Ácido Nucleico , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo
15.
Nucleic Acids Res ; 49(20): 11653-11665, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34718732

RESUMEN

The CST complex (CTC1-STN1-TEN1) has been shown to inhibit telomerase extension of the G-strand of telomeres and facilitate the switch to C-strand synthesis by DNA polymerase alpha-primase (pol α-primase). Recently the structure of human CST was solved by cryo-EM, allowing the design of mutant proteins defective in telomeric ssDNA binding and prompting the reexamination of CST inhibition of telomerase. The previous proposal that human CST inhibits telomerase by sequestration of the DNA primer was tested with a series of DNA-binding mutants of CST and modeled by a competitive binding simulation. The DNA-binding mutants had substantially reduced ability to inhibit telomerase, as predicted from their reduced affinity for telomeric DNA. These results provide strong support for the previous primer sequestration model. We then tested whether addition of CST to an ongoing processive telomerase reaction would terminate DNA extension. Pulse-chase telomerase reactions with addition of either wild-type CST or DNA-binding mutants showed that CST has no detectable ability to terminate ongoing telomerase extension in vitro. The same lack of inhibition was observed with or without pol α-primase bound to CST. These results suggest how the switch from telomerase extension to C-strand synthesis may occur.


Asunto(s)
ADN de Cadena Simple/metabolismo , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Células HEK293 , Humanos , Mutación , Unión Proteica , Telomerasa/química
16.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518220

RESUMEN

Bladder cancer (BC) has a 70% telomerase reverse transcriptase (TERT or hTERT in humans) promoter mutation prevalence, commonly at -124 base pairs, and this is associated with increased hTERT expression and poor patient prognosis. We inserted a green fluorescent protein (GFP) tag in the mutant hTERT promoter allele to create BC cells expressing an hTERT-GFP fusion protein. These cells were used in a fluorescence-activated cell sorting-based pooled CRISPR-Cas9 Kinome knockout genetic screen to identify tripartite motif containing 28 (TRIM28) and TRIM24 as regulators of hTERT expression. TRIM28 activates, while TRIM24 suppresses, hTERT transcription from the mutated promoter allele. TRIM28 is recruited to the mutant promoter where it interacts with TRIM24, which inhibits its activity. Phosphorylation of TRIM28 through the mTOR complex 1 (mTORC1) releases it from TRIM24 and induces hTERT transcription. TRIM28 expression promotes in vitro and in vivo BC cell growth and stratifies BC patient outcome. mTORC1 inhibition with rapamycin analog Ridaforolimus suppresses TRIM28 phosphorylation, hTERT expression, and cell viability. This study may lead to hTERT-directed cancer therapies with reduced effects on normal progenitor cells.


Asunto(s)
Mutación/genética , Regiones Promotoras Genéticas/genética , Telomerasa/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Proteína 28 que Contiene Motivos Tripartito/genética , Neoplasias de la Vejiga Urinaria/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células Madre/patología
17.
Nat Commun ; 12(1): 3308, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083519

RESUMEN

The spatial partitioning of the transcriptome in the cell is an important form of gene-expression regulation. Here, we address how intron retention influences the spatio-temporal dynamics of transcripts from two clinically relevant genes: TERT (Telomerase Reverse Transcriptase) pre-mRNA and TUG1 (Taurine-Upregulated Gene 1) lncRNA. Single molecule RNA FISH reveals that nuclear TERT transcripts uniformly and robustly retain specific introns. Our data suggest that the splicing of TERT retained introns occurs during mitosis. In contrast, TUG1 has a bimodal distribution of fully spliced cytoplasmic and intron-retained nuclear transcripts. We further test the functionality of intron-retention events using RNA-targeting thiomorpholino antisense oligonucleotides to block intron excision. We show that intron retention is the driving force for the nuclear compartmentalization of these RNAs. For both RNAs, altering this splicing-driven subcellular distribution has significant effects on cell viability. Together, these findings show that stable retention of specific introns can orchestrate spatial compartmentalization of these RNAs within the cell. This process reveals that modulating RNA localization via targeted intron retention can be utilized for RNA-based therapies.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Telomerasa/genética , Animales , Compartimento Celular , Línea Celular , Línea Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Intrones , Ratones , Mitosis , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Estabilidad del ARN , Especificidad de la Especie
19.
Nat Rev Mol Cell Biol ; 22(4): 283-298, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33564154

RESUMEN

The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Cromosomas/metabolismo , ADN/metabolismo , Humanos , Telomerasa/metabolismo
20.
Methods ; 191: 44-58, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33444739

RESUMEN

Mutagenesis studies have rapidly evolved in the era of CRISPR genome editing. Precise manipulation of genes in human induced pluripotent stem cells (iPSCs) allows biomedical researchers to study the physiological functions of individual genes during development. Furthermore, such genetic manipulation applied to patient-specific iPSCs allows disease modeling, drug screening and development of therapeutics. Although various genome-editing methods have been developed to introduce or remove mutations in human iPSCs, comprehensive strategic designs taking account of the potential side effects of CRISPR editing are needed. Here we present several novel and highly efficient strategies to introduce point mutations, insertions and deletions in human iPSCs, including step-by-step experimental protocols. These approaches involve the application of drug selection for effortless clone screening and the generation of a wild type control strain along with the mutant. We also present several examples of application of these strategies in human iPSCs and show that they are highly efficient and could be applied to other cell types.


Asunto(s)
Edición Génica , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Células Madre Pluripotentes Inducidas , Mutagénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...